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TECHNICAL MEMORANDUM

SINGLE WALL PENETRATION EQUATIONS

1. INTRODUCTION

Concern about the effects of orbital debris impacts on space vehicles in low-Earth orbit has
prompted a study of penetration predictor equations for a single plate structure. Since the mid-60’s,
many equations have been developed to predict penetration of a single thin plate by a meteoroid or
orbital debris projectile. This document is a report of a comparison of five of these equations for
accuracy and effectiveness.

Each equation included in this study was developed with a unique set of test parameters.
Actual conditions under which a spacecraft is required to survive may or may not be within the
parameter range for an equation. Therefore, extreme care should be taken when using any predictor
equation since each can only be used to predict penetration for a specific set of parameters. After
some study of test parameters, it will become obvious that the majority of expected projectile veloci-
ties cannot be tested with current technology. Theoretical predictions must be relied upon for these
occurrences until further advances can be made in hypervelocity impact technology.

It is not the purpose of this report to recommend the correct equation(s) to use in analyzing a
vehicle, but rather to compare the equations and how they were developed to give the designer a
better feel for how the design will stand up to hypervelocity impacts of orbital debris projectiles.
Hypervelocity impact testing should always be included in the design/verification schedule for any
vehicle which will be exposed to the orbital debris environment for any length of time.

One should not neglect to analyze a vehicle which has potential safety problems. Each
component should be carefully evaluated to discover possible dangerous effects of hypervelocity
impacts. A vehicle should have an acceptable reliability for astronaut safety as well as an acceptable
reliability for no functional failure.

2. SINGLE PLATE PENETRATION EQUATIONS

Two well-known equations (Fish-Summers and Schmidt-Holsapple), two equations devel-
oped for the Apollo project (Rockwell and Johnson Space Center (JSC)), and one recently revised
from JSC (Cour-Palais) are the five single plate penetration equations compared in this section for
accuracy and effectiveness. The following subsections will discuss each of these empirical equations.

2.1 Fish-Summers Equation

The following equation was developed by Fish and Summers.! They used test results with
velocities which ranged from 0.5 to 8.5 km/s, metallic targets which ranged in density from a magne-
sium-lithium alloy to a beryllium-copper alloy, and with aluminum alloy projectiles.Z This equation
was recommended for design to establish the threshold penetration (ballistic limit) of thin, ductile,
metal plates.

1
t= K1m0'352V0'875p6 ,



where

t = target thickness (cm)

K, = a constant for target

m = projectile mass (gm)

p = projectile density (gm/cm3)

V = impact velocity (km/s)
and

K; = 0.57 for aluminum alloys such as 2024-T3, 2024-T4, 6061-T6, and 7075-T6.
Additional values for K; are given in the reference.

The 0.70 factor was used to determine the plate thickness to prevent a penetration from
spalling (spallation limit), as recommended by Coronado, Gibbins, Wright, and Stern.3

The Fish-Summers equation is the simplest of all the equations presented here. Target
material properties effects are taken care of by the constant K.

2.2 Schmidt-Holsapple Equation

The following equation was developed by Holsapple and Schmidt,* with test results obtained
by many investigators such as Payne, Gault, Wedekind, et al. Some tests done by Payne used pro-
jectiles of tungsten, carbide, lead, copper, stainless steel, titanium, magnesium and aluminum; tar-

gets of stainless steel and aluminum; and velocities ranging from 4 to 8 km/s. Some tests done by
Gault used Pyrex spheres as the projectiles, water as the target, and velocities ranging from 1.5 to

6.0 km/s.3
4= 2.06¢ (p_p)—0.159 (2.681"}“)0'236
P: 2 ’
PpVn
where

d = projectile diameter (in)

t = target thickness (in)r

pp = projectile density (Ib/in3)

p: = target density (I1b/in3)

F,, = ultimate tensile strength for target (Ib/in2)

V. = impact velocity (normal component of the projectile relative velocity) (ft/s).

Again the 0.70 factor was used for the spallation limit.



The Schmidt-Holsapple equation involves the target material strength and density as well as
projectile density to better characterize the material behavior of impact. This is the only equation of
those presented in this paper using English units.

2.3 Rockwell Equation for the Apollo Project

There were two independently developed empirical equations for the Apollo project. One was
developed by Rockwell and the other by Burton Cour-Palais at JSC.5 The Rockwell equation shown
below was developed from test results using aluminum projectiles and targets with impact velocities
up to 8 km/s. The JSC (Cour-Palais) equation will be discussed in subsection 2.4.

For crater depth:

p= 1.38d1'IBH‘O'25p,9'5p;O'167V0'67 _

For ballistic limit:
t,=18p.

For spallation limit:
t;=3.0p,

where
p = crater depth on target (cm)
tp = target thickness for ballistic limit (cm)
t; = target thickness for spallation limit (cm)
d = projectile diameter (cm)
pp = projectile density (gm/cm?3)
p: = target density (gm/cm3)
BH = Brinnell hardness for target
V = impact velocity (km/s).'

This equation involves target density and material hardness as well as projectile density to
characterize the behavior of impacts.

2.4  JSC (Cour-Palais) Equation for the Apollo Project
As mentioned in the previous section, NASA/JSC engineers developed the equation shown

below during the Apollo project, independent of the Rockwell equation but in appearance very
similar.3



For crater depth with projectile density (’;—’: < 1.5):

p = 5'24d1.056BH—0.25p;(,)_5pt—0.167E—0.33V0.67 .

For ballistic limit;
Ip = 2.0p .

For spallation limit:
t; =3.0p,

where

p = crater depth on target (cm)

1, = target thickness for ballistic limit (cm)

t; = target thickness for spallation limit (cm)

d = projectile diameter (cm)

pp = projectile density (gm/cm3)

p: = target density (gm/cm3)

BH = Brinnell hardness for target

E = Young’s modulus for target (GPa)

V = impact velocity (km/s).

This equation involves target density, the modulus of elasticity, and material hardness as
well as projectile density to characterize the behavior of impacts.

2.5 JSC (Modified Cour-Palais) Equation

The newest and recently distributed equation modified from the Cour-Palais equation for the
Apollo project by Burton Cour-Palais at JSC is shown below.6

For crater depth:

1o . 0.25 Pp)°-5(V )2‘
=5.24d,sBH £1 -3 .
p 13 p:] \c

For ballistic limit

t=18p.



For spallation limit:
t;=2.2p,
where

p = crater depth on target (cm)

t, = target thickness for ballistic limit (cm)

t; = target thickness for spallation limit (cm)

d = projectile diameter (cm)

pp = projectile density (gm/cm3)

p: = target density (gm/cm3)

BH = Brinnell hardness for target

V, = impact velocity (normal component of the projectile relative velocity) (km/s).

C = speed of sound for target (km/s)
_JE
Pt

This equation uses dimensionless quantities by making ratios of target and projectile densi-
ties and velocities.

3. COMPARISONS OF FIVE SINGLE PLATE PENETRATION EQUATIONS AND TEST
RESULTS

The comparison of the five equations discussed in section 2 will be discussed in subsection
3.1. Then the comparison of these equations with test results will be discussed in subsection 3.2.

3.1 Comparisons of Single Plate Penetration Equations

Microsoft Excel software was used to construct a spreadsheet to calculate the diameters and
masses of projectiles for various velocities, varying the material properties of both the projectile and
target for the five single plate penetration equations. The calculated results for a 2017 aluminum
projectile and a 2024-T3 aluminum target are shown on table 1. The results were plotted on diameter
versus velocity graphs for ballistic and spallation limits using Cricket Graph software, for velocities
ranging from 2 to 15 km/s (as defined for orbital debris in reference 7) with several different thick-
nesses, i.e., 0.040 in (0.106 ¢cm), 0.050 in (0.127 c¢cm), 0.080 in (0.203 cm), and 0.100 in (0.254 c¢m) for
2024-T3 and 6061-T6 aluminum targets. Figures 1 and 2 show the results for ballistic and spallation
limits for a 6061-T6 target 0.040-in (0.106-cm) thick. To show the variation with target density,
figures 3 and 4 show the results for ballistic and spallation limits for a 2024-T3 aluminum target.

As discussed before, these five equations were derived from test results, with velocities
ranging up to 8 km/s. Therefore, the predicted values for the projectile’s mass and diameter above
8 km/s are currently impossible to verify by experiment.
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Figure 1 shows the penetration resistance (ballistic limit) of a single-wall structure for the
five penetration equations. The Schmidt-Holsapple equation appears to predict the largest values for
particle diameters, given an impact velocity. The JSC equation for the Apollo project appears to
predict the lowest values for particle diameters, for velocities below 7.5 km/s. Then the Fish-
Summers equation predicts the lowest critical diameters for velocities above 7.5 km/s. For the spal-
lation limit (fig. 2), these predictions are nearly the same as for the ballistic limit, except the JSC
equation for the Apollo project predicts the lowest critical diameters up to about 9.5 km/s; the Fish-
Summers equation yields the lowest values above 9.5 km/s (fig. 2). This behavior is the same for
different thicknesses of the same material (6061-T6 Al). In the case of 2024-T6 aluminum for the
ballistic limit, figure 3 shows that the Schmidt-Holsapple equation predicts the largest critical
diameters; the lowest critical diameters are predicted by the JSC equation for the Apollo project for
velocities up to 5 km/s, and by the Fish-Summers equation above 5 km/s. For the spallation limit, as
can be seen on figure 4, the JSC equation for the Apollo project predicts the lowest critical diameter
up to 6.5 km/s, and the Fish-Summers equation predicts the lowest critical diameter above 6.5 km/s.
The other two equations (Rockwell for Apollo and JSC modified Cour-Palais) predict values between
the values predicted by these equations. The diameters predicted by the Schmidt-Holsapple are
between 1.5 to 2 times larger than the ones predicted by the JSC equation for the Apollo project or
Fish-Summers for the 2024-T3 aluminum. Therefore, based on spherical projectiles, the masses
predicted by the Schmidt-Holsapple equation are 4 to 7 times larger than predicted by the JSC equa-
tion for the Apollo project or the Fish-Summers equation.

The current environment defines an average debris density as an aluminum density, i.e.,
2.8 gm/cc. There are many people that believe the use of different aluminum alloys as the projectile
can cause a big difference in the ballistic limit. Figures 5 through 9 show each equation with various
aluminum alloy projectile densities for the ballistic limit, for a 6061-T6 aluminum target with 0.050-in
(0.127-cm) thickness. There is a significant difference in impact effects by various projectile materi-
als, but not by various alloys of the same material. These figures show that using various aluminum
alloy densities will have about 2.6- to 3.5-percent difference in the predicted projectile diameters.
Each equation is affected very little by changes in the projectile density, thus these equations predict
very little effect on impact damage for projectiles of these similar materials. In fact, even the calcu-
lated differences may fall within the scatter of the test data. Projectiles of dissimilar materials, how-
ever, would be expected to show significant differences in the predicted critical diameters.

3.2 Comparisons With Test Results

Nineteen hypervelocity impact tests of single plate aluminum shields were performed at JSC
for the Marshall Space Flight Center (MSFC) (table 2).

Two out of 19 tests used 2017 aluminum alloy for the projectile, and the rest used 1100
aluminum alloy. The projectile diameters ranged from 0.0156 in (0.0396 cm) to 0.0625 in (0.1588 c¢m),
and the projectile velocities ranged from 5.20 to 7.48 km/s. Two materials (2024-T3 and 6061-T6)
were used for the single wall (target), with thicknesses varying from 0.040 in (0.102 cm) to 0.190 in
(0.483 cm). '

~ Results from 14 of the tests (groups 1 through 4 from table 2) were compared with the pre-
dicted values of the five single plate penetration equations. These tests consisted of two alloys of
aluminum targets (2024-T3 and 6061-T6) and two different thicknesses per alloy: 0.040 in
(0.102 ¢cm) and 0.063 in (0.160 cm) for 2024-T3, and 0.050 in (0.127 cm) and 0.080 in (0.203 cm) for
6061-T6. Figures 10 through 13 show the test results for each condition.
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4 0.05914 0.05724 0.05714
5 ~0.04915 0.04758 0.04749
6 0.04226 0.04090 0.04083
7 0.03719 0.03600 0.03594
8 - 0.03330 0.03223 0.03217
9 0.03020 0.02923 0.02918
10 0.02768 0.02679 0.02674
11 0.02558 0.02475 0.02471
12 0.02380 0.02303 0.02299
13 0.02227 0.02155 0.02152
14 0.02094 0.02027 0.02024
15 0.01978 0.01914 0.01911

Figure 5. Penetration resistance (ballistic limit) of single wall structure 6061-T6 aluminum with
t = 0.050 in. Comparison of aluminum alloy projectile densities with Fish-Summers equation..
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0.12
Schmidt-Holsapple Equation, 1982
with Various Aluminum Alloy
0.1
Projectiles
] —3— 2.80 gm/cm3 (Average)
0-10‘_ o 281 gm/icm3 (Upper Limit)
E 1 L] 2.62 gm/cm3 (Lower Limit)
< 0.091
3 1
o
E -
i 0.08 1
(=) ;
2
& 0074
'§ 4
o
0.06 1
0.05 1
(OR 7 0 o S B S S LA S S i B BB LN B NS NN S S SIS NS R R B

2 3 4 5 6 7 8 9 io 11 12 13 14 15
Impact Velocity (km/sec)

3| lolsappl Ot
Velocity Projectile Diameter cm
km/sec 2.62gm/cm3 | 2.80 gm/cm3 | 2.81 gm/cm3
2 0.11277 0.10985 0.10969
3 0.09313 0.09071 0.09059
4 0.08130 0.07920 0.07908
5 0.07317 0.07128 0.07118
6 0.06714 0.06540 0.06531
7 0.06243 0.06081 0.06073
8 0.05862 0.05710 0.05702
] 0.05545 0.05401 0.05393
10 0.05276 0.05139 0.05132
11 0.05044 0.04913 0.04906
12 0.04841 0.04715 0.04709
13 0.04661 0.04540 0.04534
14 0.04501 0.04384 0.04378
15 0.04357 0.04244 0.04238

Figure 6. Penetration resistance (ballistic limit) of single wall structure 6061-T6 aluminum with
¢t = 0.050 in. Comparison of aluminum alloy projectile densities with
Schmidt-Holsapple equation.



0.10
Rockwsell Equation for Apollo, 1984
with Varlous Aluminum Alloy
0.09 ) Projectiles '
] : —M— 2.80 gm/cm3 (Average)

0.08 1 o 2.81 gm/em3 (Upper Limit)
'g" ] ® 262 gm/cm3 (Lower Limit)
§ 0.071
]
£
2 L
o} 0.06 1
o
°
()
° 0.05
E

0.04

0.03 1

0.02 T TTT T T T T T TN T T Y T T T T T

2 3 4 5 6 7 8 9 io 11 12 13 14 15

Velocity Projectile Diameter cm
km/sec 2.62gm/cm3 | 2.80 gm/cm3 | 2.81 gm/cm3
2 0.09286 0.08010 0.08995
3 0.07254 0.07038 0.07027
4 0.06088 0.05907 0.05897
5 0.05314 0.05156 0.05148
6 0.04756 0.04614 0.04607
7 0.04330 0.04201 0.04194
8 0.03991 0.03873 0.03866
9 0.03715 0.03605 0.03599
10 0.03484 0.03381 0.03375
11 0.03288 0.03190 0.03185
12 0.03118 0.03025 0.03020
13 0.02970 0.02881 0.02877
14 0.02839 0.02754 0.02750
15 0.02722 0.02641 0.02636

Figure 7. Penetration resistance (ballistic limit) of single wall structure 6061-T6 aluminum with
t = 0.050 in. Comparison of aluminum alloy projectile densities
with Rockwell equation for Apollo.
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0.09

JSC Equation for Apolio, 1984

0.08 with Various Aluminum Alloy
Projectiles
—»— 280 gm/cm3 (Average)
— 0.07 1 o 2.81 gm/cm3 (Upper Limit)
£ 4
23 L4 2.62 gm/cm3 (Lower Limit)
5 E
o 0.06
£ ;
K]
(=
@ .
S 0.05 1
2 -
2
o 1
0.04 1
0.03 1
0.02 +—r——r1rr—r1T T T T

2 3 4 5 6 7 8 9 10 11 12 13 14 15
Impact Veloclty (km/sec)

Velocity Projectile Diameter cm

km/sec 2.62gm/cm3 | 2.80 gm/cm3 | 2.81 gm/cm3
2 0.08103 0.07852 0.07839
3 0.06265 0.06071 0.06061
4 0.05220 0.05058 0.05050
5 0.04531 0.04391 0.04383
6 0.04036 0.03911 0.03904
7 0.03660 0.03547 0.03541
8 0.03363 0.03258 0.03253
9 0.03120 0.03024 0.03019
10 0.02919 0.02828 0.02824
11 0.02747 0.02662 0.02658
12 0.02600 0.02519 0.02515
13 0.02471 0.02395 0.02391
14 0.02358 0.02285 0.02281
15 0.02257 0.02187 0.02183

Figure 8. Penetration resistance (ballistic limit) of single wall structure 6061-T6 aluminum with
¢ = 0.050 in. Comparison of aluminum alloy projectile densities with JSC equation for Apollo.
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0.10
JSC (Cour-Palals) Equation, 1989
0.09 with Various Aluminum Alloy
Projectiles
1 —¥— 2.80 gm/cm3 (Average)
0.08
E ] o 2.81 gm/cm3 (Upper Limit)
o
:’ ] ] 2.62 gm/cm3 (Lower Limit)
2 0.07 1
] 4
E
5
o 4
o 0.0Sj
°
2 4
[
a 0.05 .
0.04
0.03 1
0.02 ++——rTrr T T T T T Ty

2 3 4 5 6 7 8 9 i0 11 12 13 14 15
Impact Velocity (km/sec)

Velocity Projectile Diameter cm

km/sec ]2.62 gm/cm3 _ [2.80 gm/cm3 _ |2.81 gm/cm3
2 0.09082 0.08800 0.08786
3 0.07030 0.06812 0.06801
4 0.05862 0.05680 0.05671
5 0.05091 0.04934 0.04925
6 0.04538 0.04397 0.04390
7 0.04117 0.03989 0.03982
8 0.03784 0.03667 0.03660
9 0.03513 0.03404 0.03398
10 _0.03286 0.03185 0.03179
11 0.03094 0.02999 0.02993
12 0.02929 0.02838 0.02833
13 0.02785 0.02698 0.02694
14 0.02657 0.02575 0.02571
15 0.02544 0.02465 0.02461

Figure 9. Penetration resistance (ballistic limit) of single wall structure 6061-T6 aluminum with
¢t = 0.050 in. Comparison of aluminum alloy projectile densities with JSC (Cour-Palais) equation.
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All five equations predicted the penetration that resulted from the tests using 2024-T3
aluminum targets with 0.040-in (0.102-cm) thickness (fig. 10). Also, all five equations predicted the
nonpenetrations that resulted using 2024-T3 aluminum targets with 0.063-in (0.160-cm) thickness
(fig. 11). For each of these two cases, only two data points were available from the tests, and the
projectile’s size used were too far away from the ballistic limit curve to make any conclusions of the
equations’ accuracies. Four of the equations, all but the Schmidt-Holsapple equation, correctly
predicted the no penetration results of four tests which used 6061-T6 aluminum targets with 0.080-
in (0.203-cm) thickness (fig. 12) and incorrectly predicted a penetration would occur for the fifth test
(No. 1203). The Schmidt-Holsapple equation correctly predicted that all five of the tests would
result in incomplete target penetration. Again there is not enough test data to determine the effec-
tiveness of these equations.

Finally, as shown on figure 13, two equations (Rockwell for Apollo and Schmidt-Holsapple)
incorrectly predict five of the six tests for the aluminum target 6061-T6 with 0.050-in (0.127-cm)
plate thickness. The Fish-Summers equation and JSC (Apollo) equation, on the other hand, correctly
predict five of the six tests, with test No. 1238 being the incorrectly predicted penetration. By looking
at figure 13, one can expect that the ballistic limit might exist somewhere between the modified
Cour-Palais and Fish-Summers equations, but additional tests are required to verify this.

4. RECOMMENDATIONS/CONCLUSIONS

In the previous section, the five single plate penetration equations were compared to each
other and with test results. As seen in section 3.1, these equations predict a wide range of projectile
diameters at a given velocity. Thus it is very difficult to choose the “right” prediction equation. The
thickness of the single plate could have a large variation by choosing a different penetration equation.

One can save much weight by choosing the most unconservative equation, which underesti-
mates the value for the penetrating projectile diameter. Therefore, the cost can be reduced signifi-
cantly, but this choice could result in unforeseen critical damage to the spacecraft or loss of the entire
spacecraft. On the other hand, one can design a conservative, well-protected spacecraft, but the
spacecraft could become very heavy. Thus, the launch and material costs would be increased.

Even though all five equations are empirically developed with various materials, and
especially for aluminum alloys, one cannot be confident in the shield design with the predictions
obtained by the penetration equations, without verifying by tests. Therefore, it is recommended that
designed shields should be tested with the actual configuration, and realistic velocities and materials
for projectiles, to prove the design will act as predicted, when impacted by a meteoroid or debris
particle. Only then can the design be declared acceptable for orbital operations.
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